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CHAPTER

ONE

APPROXIMATING WAVE PROPAGATION

Motivation:

When solving a partial diferencial equation numerically, one has quite a number of difference methods of doing so.
Three most widely used numerical methods are finite difference (FDM), finite volume (FVM) and finite element
method (FEM). They are different techniques to discerert spatial derivatives. And combine them with an time integra-
tion method of an ordinary differential equation, we are able to advance the equation in time.

Finite difference method, though it is simple and intuitive, it has the weakness to handle local one-dimensional poly-
nomial. Moreover, when discontinuous interal layers (e.g., discontinuous material coefficients) are involved, or com-
plicated geometric is needed, the method becomes ill-suited. If we want to combine the geometric flexibility (finite
volume) and high-order accuracy (finite element) , Discontinuous Galerkin method is one of your ideal choice.

1
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Discontinuous Galerkin, or DG, overcomes the limitation on achieving high-order accuracy on general grids, compared
with FVM. Whereas DG’s structure is quite similar to FEM, it’s mass matrix is local rather than global, thus, it is less
costly to invert that. Additionally, the numerical flux is designed to reflect the underlying dynamics, one has more
choices than FEM to ensure the stability for wave dominated problem.

Here, we present a 2D DG solver for a classic wave propagation problem.

1.1 Motivation

Hello world!

1.2 Spectral Approximation

1.2.1 Polynomial Basis Functions

The Legendre Polynomials.

1.2.2 Polynomial Series

1.2.3 Gauss Quadrature

Hello

1.3 Spectral Approximation on a square

1.3.1 Approximation of Wave Propagation

Basic Model

The basic model is the linear wave equation with the form:

𝜕2𝑝

𝜕𝑡2
− 𝑐2(

𝜕2𝑝

𝜕𝑥2
+

𝜕2𝑝

𝜕𝑦2
) = 0

The wave equation is the fundamental equation of acoustics. It is based on two improtant approximation, namely,
that the flow may be treated as inviscide and that convective derivatives are negligible in comparison to unsteady
derivatives. (we neglect viscous and other diffusion effect(heat), when convection transfer is much faster than diffusion
transfer of mass, momentum or energy.)

The variable 𝑝 may represent acoustic pressure in an otherwise quiescent gas and 𝑐 could be sound speed.

In order to solve the second order equation, we re-write the equation as a system of three first order equations.

Convert the wave equation to a system of first order equation, let:

𝑢𝑡 = −𝑝𝑥, 𝑣𝑡 = −𝑝𝑦.

𝑢 and 𝑣 correspond to the components of the velocity in a fluid flow.

2 Chapter 1. Approximating Wave Propagation
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Assuming the order of mixed partial derivatives does not matter, then:

𝜕2𝑝

𝜕𝑡2
+ 𝑐2((𝑢𝑥)𝑡 + (𝑣𝑦)𝑡) = 0.

Combining with initial conditions,

𝑝𝑡 + 𝑐2(𝑢𝑥 + 𝑣𝑦) = 0.

We now obtain the system of equations by grouping the equation for pressure and two velocity components⎡⎣𝑝𝑢
𝑣

⎤⎦
𝑡

+

⎡⎣0 𝑐2 0
1 0 0
0 0 0

⎤⎦⎡⎣𝑝𝑢
𝑣

⎤⎦
𝑥

+

⎡⎣0 0 𝑐2

0 0 0
1 0 0

⎤⎦⎡⎣𝑝𝑢
𝑣

⎤⎦
𝑦

or

qt + 𝐴qx + 𝐵qy = 0

Since 𝐴 and 𝐵 are constants, we can bring them inside the derivatives

qt + fx + gy = 0

fx = 𝐴qx

gy = 𝐵qy

This is known as Conservation law form since it can be written as

qt + ▽ · 𝐹 = 0

where the vector flux 𝐹 = f̂︀𝑥 + ĝ︀𝑦.

The term conservation law follows from the fact that the differential equation is what we get when we apply the
divergence theorem to the integral conservation law.

𝑑

𝑑𝑡

∫︁
𝑉

q𝑑𝑉 = −
∫︁
𝑆

𝐹 · ̂︀𝑛𝑑𝑆
Riemann Problem for Conservation Law

Introduction

A Riemann problem, named after Bernhard Riemann, is a specific initial value problem composed of a conservation
equation together with piecewise constant initial data which has a single discontinuity in the domain of interest. The
Riemann problem is very useful for the understanding of equations like Euler conservation equations because all
properties, such as shocks and rarefaction waves, appear as characteristics in the solution. It also gives an exact
solution to some complex nonlinear equations, such as the Euler equations.

1.3. Spectral Approximation on a square 3

https://en.wikipedia.org/wiki/Riemann_problem


2d_DG_advection Documentation, Release 1.0

Riemann Solver

Here we build a Riemann problem for the hyperbolic, constant coefficient system with proper initial condition.

qt + 𝐴qx + 𝐵qy = 0

The coefficient matrices 𝐴 and 𝐵 have 𝑚 real eigenvalues 𝜆𝑖 and 𝑚 linearly independent eigenvectors K(𝑖), where 𝑚
is the equation number Reference.

The Nodal Discontinuous Galerkin Approximation

We will implement the discontinuous Galerkin spectral element approximation of two-dimensional conservation law
on a square domain.

qt + fx + gy = 0, 𝑥 ∈ (𝐿,𝑅), 𝑦 ∈ (𝐷,𝑈) (1.1)

The spectral element approximation starts with a weak form of (1.1). We multiply (1.1) by a test function, integrate
and subdivide into elements

𝐾∑︁
𝑘=1

[︃∫︁ 𝑥𝑘

𝑥𝑘−1

(q𝑡 + f𝑥 + g𝑦)𝜑𝑑𝑥

]︃
= 0 (1.2)

4 Chapter 1. Approximating Wave Propagation
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We map (1.2) onto reference space by affine map (1.3)

𝑥 = 𝑥𝑘−1 +
𝜉 + 1

2
∆𝑥𝑘,∆𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘+1

𝑦 = 𝑦𝑘−1 +
𝜂 + 1

2
∆𝑦𝑘,∆𝑦𝑘 = 𝑦𝑘 − 𝑦𝑘+1

𝑑𝑥 =
∆𝑥𝑘

2
𝑑𝜉,

𝜕

𝜕𝑥
=

2

∆𝑥𝑘

𝜕

𝜉

(1.3)

The solution and fluxes are approximated by polynomials of degree N and represent the polynomials in nodal, La-
grange form

q ≈ Q =

𝑁∑︁
𝑛=0

𝑀∑︁
𝑚=0

Q𝑛,𝑚𝑙𝑛(𝑥)𝑙𝑚(𝑦)

F𝑛,𝑚̂︀𝑥 + G𝑛,𝑚̂︀𝑦 = 𝐵Q𝑛,𝑚̂︀𝑥 + 𝐶Q𝑛,𝑚̂︀𝑦 (1.4)

where F𝑛,𝑚̂︀𝑥 + G𝑛,𝑚̂︀𝑦 = 𝐵Q𝑛,𝑚̂︀𝑥 + 𝐶Q𝑛,𝑚̂︀𝑦. We subsitute the approximations into the weak form of the PDE,
and let (Q𝑡, 𝜑𝑖𝑗) + (▽ · F, 𝜑𝑖𝑗) = 0.

If we apply Green’s identity to the second intergal

(▽ · F, 𝜑𝑖𝑗) =

∫︁ 𝑟

𝑙

𝜑𝑖𝑗 ▽ ·F𝑑𝑥𝑑𝑦 =
∆𝑥

2

∫︁ 1

−1

𝜑𝑖𝑗f𝜉𝑑𝜉 +
∆𝑦

2

∫︁ 1

−1

𝜑𝑖𝑗g𝜂𝑑𝜂

The Nurmerical flux

Time Integration

Change of Interval

Benchmark Solution: Plane wave Propagation

We represent a plane Gaussian wave through the grid.

The plane wave is defined as: ⎡⎣𝑝𝑢
𝑣

⎤⎦ =

⎡⎣ 1
𝑘𝑥

𝑐
𝑘𝑦

𝑐

⎤⎦ 𝑒−
(𝑘𝑥(𝑥−𝑥0)+𝑘𝑦(𝑦−𝑦0)−𝑐𝑡)2

𝑑2

Where k is the wavevector and it is normalized to satisfiey 𝑘2𝑥 + 𝑘2𝑦 = 1. The wavevector is choosen as
k = (

√
2/2,

√
2/2) This is a wave with Gaussian shape where we compute the parameter 𝑑 from the full width

at half maximum, 𝜔 = 0.2, by math:d = omega/2sqrt{ln2}. The other parameters are 𝑐 = 1 and 𝑥0 = 𝑦0 = −0.8.

Performance Evaluation

Exact boundary solutions are imposed on the 4 side of the computation domain. The initial condition is setting t=0.0
of the exact solution.

1 element

Domain: 𝑥 ∈ [0.0, 1.0], 𝑦 ∈ [0.0, 1.0].

Time step: ∆𝑡 = 2.0 × 10−4

1.3. Spectral Approximation on a square 5
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Fig(1), shows the error performances.

4 element2

Domain: 𝑥 ∈ [0.0, 1.0], 𝑦 ∈ [0.0, 1.0].

Time step: ∆𝑡 = 2.0 × 10−4

Fig(2), shows the error performances.

6 Chapter 1. Approximating Wave Propagation
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16 elements

Domain: 𝑥 ∈ [0.0, 1.0], 𝑦 ∈ [0.0, 1.0].

Time step: ∆𝑡 = 1.0 × 10−5

Fig(3), shows the error performances.

64 elements

Domain: 𝑥 ∈ [0.0, 8.0], 𝑦 ∈ [0.0, 8.0].

Time step: ∆𝑡 = 1.0 × 10−5

Fig(3), shows the error performances.

1.3. Spectral Approximation on a square 7
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1.4 Numerical Flux schemes

1.4.1 Central Flux

𝑎 + 𝑏 = 1

𝑎 + 𝑏 = 1(1.5)

1.4.2 Lax-Friedrichs Flux

1.4.3 Upwind Flux

1.5 AMR Strategies

1.5.1 Introduction

Why AMR?

In order to effectively utilize the computational resources while remaining the flexibility in solving complex geometries
and the prescribed accuracy, Adaptive Mesh Refinement (AMR) is invoked to focus the computational effort and
memory usage to where it is needed.

Three main algorithms

Three main algorithms have emerged overtime, which we can call them: unstructured (U), block-structured (s), and
hierarchical or tree-based (T) AMR.

8 Chapter 1. Approximating Wave Propagation
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UAMR

Unstructured mesh. Traditionally use graph-based partitioning algorithm, now are supplementing by fast algorithms
based on coordinate partitioning and SFCs.

SAMR

A sequence of nested structured grids at different hierachies or levels are overlapped with or patched onto each other.

A tree-like data structure is used to facilitate the communication (transfer information) between the regular Cartesian
grids at the various hierachies. Each node in this tree-like data structure represents an entire grid rather than simply a
cell.

1.5. AMR Strategies 9
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Pros:

• Each node in the tree structure represents an entire grid enables the solver to solve the structured grids
efficiently.

Cons:

• Communication patterns between levels can be complex.

• Algorithm complexity can be substantial.

• Due to the clustering methods used to define the sub-grids, portions of the cumputational dmain covered
by a highly refined mesh when it is not needed, resulting a wasted computational effort.

Library

• Chombo

• PARAMESH

• SAMRAI

TAMR

A qurad-tree/oct-tree data structure is used in 2D/3D to represent the grid hierarchies. Each node stands for a individual
cell.

Pros:

• Mesh can be locally refined (increase storage savings)

• Better control of the grid resolution (comparing with SAMR)

Cons:

• In conventional quard-tree/oct-tree discretization, the connectivity information between individual cell and
its neighbours needs to be stored explicitly. (oct-tree each cell 19 words of computer memory)

• large memory overhead to maintain tree-data structures.

• Difficult to parallelize.

– data moving: distruct and rebuild the linker.

– neighbour finding: need to traverse the tree to locate the closet ancestor (what if ancestor is on
another processor?).

10 Chapter 1. Approximating Wave Propagation
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Library

• p4est

• Zoltan

1.5.2 Data structure: Quardtree/Octree

Data structure Classifications

Quardtree definition

A quadtree is a tree data structure in which each internal node has exactly four children. Quadtrees are the two-
dimensional analog of octrees and are most often used to partition a two-dimensional space by recursively subdividing
it into four quadrants or regions.

1.5.3 Tree-based AMR algorithm

Objectives

• Reduce the memory overhead required to maintain the information embodies in the tree structure.

• Rapid and easy access to the information stored in the tree.

1.5. AMR Strategies 11

https://en.wikipedia.org/wiki/Quadtree


2d_DG_advection Documentation, Release 1.0

p4est

Linear octree

Only store the leaves of the octree (“linear” octree).

Full Threaded Tree (FTT)

Memory requirement: 2 3
8 words per cell (conventional 19 words per cell).

The actual number of traversed levels required to find a neighbour never exceeds one.

12 Chapter 1. Approximating Wave Propagation
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Cell-Based Structured Adaptive Mesh Refinement

Optimized FTT.

Cartesian-like indices are used to identify each cell. With these stored indices, the information on the parent, children
and neighbours of a given cell can be accessed simply and efficiently.

Memory requirement: 5
8 words per cell.

1.5. AMR Strategies 13
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Octant coordinate calculation

The indices of the four children octs (𝑖𝑠, 𝑗𝑠)

(𝑖𝑠, 𝑗𝑠) = {(2𝑖 + 𝑚, 2𝑗 + 𝑛)|𝑚 = 0, 1;𝑛 = 0, 1}

The parent of a oct (𝑖𝑝, 𝑗𝑝)

(𝑖𝑝, 𝑗𝑝) =

(︂
𝑖𝑛𝑡[

𝑖

2
], 𝑖𝑛𝑡[

𝑗

2
]

)︂

14 Chapter 1. Approximating Wave Propagation
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Neighbour finding

Cell3 find east neighbour:

(1). (i+1, j) – hash table – cell exsit (Y/N)?

(2). If Yes.

• Neighbour is the Northwest (NW) cell of cell(i+1, j) – if this cell is a leaf (Y/N)?

– Yes – over

– No – two neighbours (NW, SW)

(3). If No.

• Neighbour cell has a larger size. cell number is
(︀
𝑖𝑛𝑡[ 𝑖+1

2 ], 𝑖𝑛𝑡[ 𝑗2 ]
)︀

At most, two search are sufficient to find a neighbour of a give cell. Half of the neighbours can be reached without
consulting the hash table. Statistically, the average number of searches required to find a neighbour of a given cell is
one.

1.5. AMR Strategies 15



2d_DG_advection Documentation, Release 1.0

1.6 Dynamic Load-balancing

1.6.1 Motivation

Load balance is one of the major challenges for the efficient supercomputer, especially for applications that exhibit
workload variations. Load imbalance is an considerable impedance on the path towards higher degree of parallelism.

In particular, when load conditions changes dynamically, efficient mesh partitioning becomes an indispensible part of
scalable design.

1.6.2 Goals

Fluid dynamic application in the field of industrial engineering require high degrees of parallelism to achieve an accept-
able time to solution for a large problem size. Typical mesh-based approaches therefore rely on suitable partitioning
strategies to distribute the computational load across the set of processes.

Therefore, an efficient load-balancing approach aims to achieve two goals:

• The work load should be distribute evenly

– avoid waiting times of processing units

• At the same time the interfacing boundaries between partitions should be as small as possible.

– minimize the time spend in communication

The optimization problem is NP-hard.

1.6.3 Two popular approaches

Graph-based Algorithm

A popular choice for graph-based partition is ParMetis.

ParMetis performing very well for mesh partition for a long time. However, since ParMetis require global knowledge
of the mesh, with an increasing number of processes, graph-based partitioning algorithms seem to reach their scalabil-
ity limits. The memory consumption grows linearly with the graph size, raising the need for alternatives which could
avoid this problem. Such methods are based on space-filling curves (SFCs).

Space-filling curves (SFCs) based algorithm

SFCs reduce the partitioning problem from n dimension to one dimension. The remaining tast, the so-called 1D
partitioning problem or chains-on-chains partitioning problem, is to decompose a 1D workload array into consecutive,
balanced partitions.

Advantages

• Good Locality

– SFCs map the 1D unit interval onto a higher dimensional space such that neighboring points on the
unit interval are also neighboring points in the target space.

• Acceptable communication overhead

16 Chapter 1. Approximating Wave Propagation
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– SFCs ignores the edges of full graph imformation. It relies on the spatial properties of the curve to
ensure a reasonable partition shape. Tirthapura et al. demonstrated that the upper limit of expected
remote accesses in SFC partiotned domains are acceptable [TSA06].

• Low memory using

– Taking the good locality of SFCs, the global imformation (full graph information) needed by Graph-
based algorithm can be abandoned. Thus, SFCs opens a path towards low-memory partitioning strate-
gies.

1.6.4 Implementing SFC

The numerical approximation of wave equation is a hp-adaptive approach. That is, elements can split or merge (h-
adaptive) according to therequired resolution. Also, they can raise or decrease the polynomial degree (p-adaptive) to
adjust the convergence rate.

Due to the hp-adaptivity, different element can have differernt individual computation times, load imbalance is in-
trouduce to this application. Re-meshing and domain partitioning are not avoidable.

With the help of a SFC, the 2D structured mesh partitioning problem can be reduced to a 1D chains-on-chains parti-
tioning (CCP) problem. Knowing the index od an element, its neighbours indices can be computed locally.

Hilbert Curve

There are many SFCs, for example Morton Curve (z-curve) and Hilbert Curve.

We choose Hilbert Curve as our SFC. Although Hilbert ordering is less efficient (with flip and rotation) than Morton
Curve, Hilbert Curve brings out a better locality (no sudden “jump”).

(Left Morton and right Hilbert)

Static Grid Neighbour-finding algorithm

In Computation Fluid Dynamics, most of the cases, elements needs to exchange information (e.g. fluxes, velocity,
pressure) with their neighbour. Thus, an effective way to locate your neighbours would cut down the computation
time. When the neighbour is not stored locally, communication between processors is inevitable.

1.6. Dynamic Load-balancing 17
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For instance, we are on element 31. The domain is partitioned into4 parts and each part is assigned to one processor.
The integer coordingate of element 31 is (3, 4).

Therefore, its neighbours coordinates can be computed easily. Say we want to find its North and East neighbour, their
coordinates are (3, 5) and (4, 4), respectively.

North neighbour: We can use our Hilbert-numbering function to map between coordinate and element index. Then
(3, 5) corresponding to element 28. We successfully locate the Neighbour.

East neighbour: By using the same methond, we are able to compute the east neighbour index: 32. However, this
element is not stored locally. Locate the processor who stores the target element is done by broadcasting the element
range stored in each processor after the partitioning. And one-sided communication is invoked to warrent effective
MPI message-changing.

Dynamic grid Neighbour-finding algorithm

When h-adaptivity is introduced to the code, element splits or merge according to the error indicator. Once an element
split, it generates four identical “children” quadrants. The Octree partitioning is motivated by octree-based mesh
generation.

Neighbour-finding is achieved by using a global index (k, l, j, s) to identify element.

• k: Root element number.

• l: h-refinement level (split number).

• j: child relative position inside a parent octant.

• s: element state, can be used to determined Hilbert Curve orientation.
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1.6.5 Partitioning stratigy

We consider a 2D mesh being represented by a one dimensional array using Hilbert Curve.

Implementation

We followed the CCP strategy described in [HKR+12]. The array has the length 𝑁 which corresponding to the
number of mesh cells. Weights are give as 𝜔𝑖, where 𝑖 corresponding to teh global index for each element. The
weights represents the computation effort of each element. In fact, the load on each element due to fluid computation
is 𝑂(𝑁4)[ZBMZ+18].
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The task of the partition step is to decide which element to move to which processor. Here, we use 𝑝 to denote the
total number of processors, and every processor can be identified by a unique number called 𝑟𝑎𝑛𝑘. (0 6 𝑟𝑎𝑛𝑘 6 𝑝)

We use an exclusive prefix sum to determine the partition.

𝑝𝑟𝑒𝑓𝑖𝑥(𝐼) =

𝑁−1∑︁
𝑖=0

𝜔𝑖 (1.6)

For 0 < 𝐼 6 𝑁 and 𝑝𝑟𝑒𝑓𝑖𝑥(0) = 0. Local prefix sus are calculated, and the global offsets are adjusted afterwards
using MPI_EXSCAN() collective with MPI_SUM as reduction operation. Then each prossessor has the global prefix
sum for each of its local elements.

The ideal work load per partition is given by

𝜔𝑜𝑝𝑡 =
𝜔𝑔𝑙𝑜𝑏𝑎𝑙𝑠𝑢𝑚

𝑝
(1.7)

Where 𝜔𝑔𝑙𝑜𝑏𝑎𝑙𝑠𝑢𝑚 is the global sum of all weights. Since the overall sum already computed through the prefix sum, we
can use the last processor as a root to broadcast (MPI_BCAST) the 𝜔𝑜𝑝𝑡. Then the splitting positions between balanced
partitions can be computed locally. There is no need further information changing to decide which element to move to
which processor. The complete message changing for the partitioning only relies on two collective operation in MPI.
Both collectives can be implemented efficiently using asymptotic running time ad memory complexity of 𝑂(𝑙𝑜𝑔𝑝).

Assuming homogeneous processors, ideal splitters are multiples of 𝜔𝑜𝑝𝑡, i.e., 𝑟 · 𝜔𝑜𝑝𝑡 for all integer 𝑟 with 1 6 𝑟 < 𝑝.
The closest splitting positions between the actual elements to the ideal splitters can be found by comparing with the
global prefix sum of each element.

The efficiency 𝐸 of the distribution work is bounded by the slowest process, and thus cannot better than:

𝐸 =
𝜔𝑜𝑝𝑡

𝑚𝑎𝑥𝑝−1
𝑟=0(𝜔𝑠𝑢𝑚(𝑟))
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Exchange of Element

After the splitting positions are decided, elements needs to be relocated. The relocation, or exchange of elements is
done via communication between processors. The challenge part is, though, the sender knows which element to send
to which processor, the receiver does not know what they will receive.

Some application use a regular all-to-all collective operation to imform all processors about the their communica-
tion partners before doing teh actual exchange of the elements with an irregular all-to-all collective operation (e.g.
MPI_Alltoallv).

Alternatively, elements can be propagated only between neighbour processors in an iterative fasion. This method can
be benigh when the re-partitioning modifies an existing distribution of element only slightly. Unfortunately, worse
cases can lead to 𝑂(𝑝) forwarded messages.

In our implementation, One-sided Communication in MPI is invoked. In one-sided MPI operations, also known as
RDMA or RMA (Remote Memory Access) operation. In RMA, the irregular communication patten can be handle
easily without an extra step to determine how many sends-receives to issue. This makes dynamic communication
easier to code in RMA, with the help of MPI_Put and MPI_Get.

1.6.6 References

1.7 MPI Interface

1.7.1 One-sided Communication in MPI

Motivation

• The receiver does not know how much data to expect (non-conforming).

• Avoid send/recv delay.
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Basic Idea

The basic idea of one-sided communication models is to decouple data movement with process synchronization.

• Should be able to move data without requiring that the remote process synchronize

• Each process exposes a part of its memory to other processes

• Other processes can directly read from or write to this memory

In one-sided MPI operations, also known as RDMA or RMA (Remote Memory Access) operation.

Advantages of RMA Operations

• Can do multiple data transfers with a single synchronization operation

• Bypass tag matching

• Some irregular communication patterns can be more economically expressed
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• Can be significantly faster than send/receive on systems with hardware support for remote memory
access, such as shared memory systems.

Irregular Communication Patterns with RMA

• If communication pattern is not known a priori, but the data locations are known, the send-receive model
requires an extra step to determine how many sends-receives to issue

• RMA, however, can handle it easily because only the origin or target process needs to issue the put or get call

• This makes dynamic communication easier to code in RMA

Creating Public Memory

• Any memory created by a process is, by default, only locally accessible

• Once the memory is created, the user has to make an explicit MPI call to declare a memory region as remotely
accessible

– MPI terminology for remotely accessible memory is a“window”

– A group of processes collectively create a “window object”

• Once a memory region is declared as remotely accessible, all processes in the window object can read/write data
to this memory without explicitly synchronizing with the target process
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Basic RMA Functions for Communication

• MPI_Win_create exposes local memory to RMA operation by other processes in a communicator

• Creates window object MPI_Win_free deallocates window object

• MPI_Win_Create_Dynamic creates an RMA window, to which data can later be attached.

– Only data exposed in a window can be accessed with RMA ops

– Initially “empty”

– Application can dynamically attach/detach memory to this window by calling MPI_Win_attach/detach

– Application can access data on this window only after a memory region has been attached

• MPI_Put moves data from local memory to remote memory

• MPI_Get retrieves data from remote memory into local memory

• MPI_Accumulate updates remote memory using local values

Data movement operations are non-blocking.

Subsequent synchronization on window object needed to ensure operation is completed.

1.7.2 Parallel I/O

I/O in HPC Applications

High Performance Computing (HPC) applications often

• Read initial conditions or datasets for processing

• Write numerical data from simulations

– Saving application-level checkpoints

• In case of large distributed HPC applications, the total execution time can be broken down into the computation
time, communication time, and the I/O time

• Optimizing the time spent in computation, communication and I/O can lead to overall improvement in the
application performance

• However, doing efficient I/O without stressing out the HPC system is challenging and often an afterthought
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Addressing the I/O Bottlenecks

• Software support for parallel I/O is available in the form of

– Parallel distributed file systems that provide parallel data paths to storage disks

– MPI I/O

– Libraries like PHDF5, pNetCDF

– High-level libraries like T3PIO

• Understand the I/O strategies for maintaining good citizenship on a supercomputing resource

Real-World Scenario

Parallel Programs Doing Sequential I/O
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Parallel I/O - One file per process

Parallel I/O - Shared file (What we want)

MPI I/O

• Defined in the MPI standard since 2.0

– Uses MPI datatypes to describe files

– Uses send/receive like operations to read/write data

– Common interface for all platform/languages

• Provides high-performance (parallel) I/O operations
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HDF5: Hierarchical Data Format

HDF5 Nice Features

• Interface support for C, C++, Fortran, Java, and Python

• Supported by data analysis packages (Matlab, IDL, Mathematica, Octave, Visit, Paraview, Tekplot, etc. )

• Machine independent data storage format

• Supports user defined datatypes and metadata

• Read or write to a portion of a dataset (Hyperslab)

• Runs on almost all systems

PHDF5 Overview

• PHDF5 is the Parallel HDF5 library.

– You can write one file in parallel efficiently!

– Parallel performance of HDF5 very close to MPI I/O.

• Uses MPI I/O (Don’t reinvent the wheel)

• MPI I/O techniques apply to HDF5.

1.8 Profiling Method

1.8.1 Which is the Time Consuming Routine?

Use Gprof

Gprof is a performance analysis tool used to profile applications to determine where time is spent during program
execution. Gprof is included with most Unix/Linux implementations, is simple to use, and can quickly show which
parts of an application take the most time (hotspots). Gprof works by automatically instrumenting your code during
compilation, and then sampling the application’s program counter during execution. Sampling data is saved in a file,
typically named gmon.out, which can then be read by the gprof command.
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Typical Workflow

• compile/link with -pg option

• Set output file (by default gmon.out)

– export GMON_OUT_PREFIX=<gprof_output_file>

• To see profile and callpath

– gprof <executable> <gprof_output_file>

Example

Serial performance 4 elements, time step = 2.0e-4, domain [0.0, 1.0], polynomial order: 6

Parallel MPI One-sided Communication

2 processors
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Parallel MPI Non-blocking Communication

2 processors
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1.9 Some features in the solver

1.9.1 Element Node-ordering Format

Element node-ordering follows the format shown below:

1.9.2 Data Storage

Element coordinates

For a quadrilateral mesh, only the coordinates of two diagonal modes are stored. To be specific, point 1 and point 3.

1.10 Reference

1. Kopriva, David. (2009). Implementing Spectral Methods for Partial Differential Equations.

2.Toro, Eleuterio. (2009). Riemann Solvers and Numerical Methods for Fluid Dynamics.

3.Hesthaven, Jan & Warburton, Tim. (2008). Nodal Discontinuous Galerkin Method.
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• genindex

• modindex

• search
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